22NRM06 ADMIT 2nd Stakeholder Workshop

AC & DC High Frequency Instrument Transformers

MMM

Flexible Generation Architecture for Current Transformers Testing up to 150 kHz

Gabriella Crotti, Giovanni D'Avanzo, Antonio Delle Femine, Daniele Gallo, Domenico Giordano, Claudio Iodice, Carmine Landi, <u>Palma Sara Letizia</u>, Mario Luiso, Daniele Palladini, Davide Signorino

p.letizia@inrim.it

Overview

- ✓ Background and motivation
- ✓ General architecture of the proposed solution
- ✓ Preliminary experimental activity for the validation of the proposed approach:
 - Test procedure
 - Two case studies
- \checkmark Conclusions

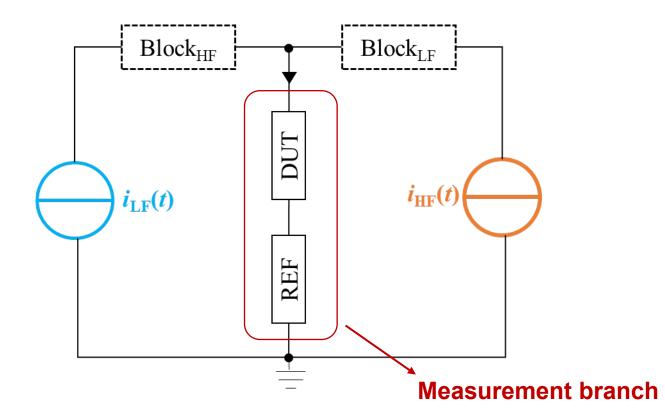
Background and motivation

The recently released **IEC 61869-1 Edition 2** introduces extensions to the accuracy classes of ITs in frequency. However, it lacks guidance on <u>how</u> to assess accuracy at frequencies other than the power frequency.

Accuracy class	Ratio error at frequencies shown below %			Phase error at frequencies shown below Degrees		
WB1	$f_{\rm r} < f \le 1 \text{ kHz}$	1 < <i>f</i> ≤ 1,5 kHz	1,5 < <i>f</i> ≤ 3 kHz	$f_{\rm r} < f \le 1 \text{ kHz}$	1 < <i>f</i> ≤ 1,5 kHz	1,5 < <i>f</i> ≤ 3 kHz
WB2	$f_{\rm r} < f \le 5 \text{ kHz}$	5 < <i>f</i> ≤ 10 kHz	10 < <i>f</i> ≤ 20 kHz	$f_{\rm r} < f \le 5 \text{ kHz}$	5 < <i>f</i> ≤ 10 kHz	10 < <i>f</i> ≤ 20 kHz
WB3	$f_{\rm r} < f \le 20 \text{ kHz}$	20 < <i>f</i> ≤ 50 kHz	50 < <i>f</i> ≤ 150 kHz	$f_{\rm r} < f \le 20 \text{ kHz}$	20 < <i>f</i> ≤ 50 kHz	50 < <i>f</i> ≤ 150 kHz
WB4	$f_{\rm r} < f \le 50 \text{ kHz}$	50 < <i>f</i> ≤ 150 kHz	150 < <i>f</i> ≤ 500 kHz	$f_{\rm r} < f \le 50$ kHz	50 < <i>f</i> ≤ 150 kHz	150 < <i>f</i> ≤ 500 kHz
0,1	±1	±2	±5	±1	±2	±5
0,2 – 0,2 S	±2	±4	±5	±2	±4	±5
0,5 – 0,5 S	±5	±10	±10	±5	±10	±20
1	±10	±20	±20	±10	±20	±20
Protection	±10	±20	±30	-	-	-

Existing **literature** on ITs and PQ emphasizes the need to test IT under conditions close to actual one.

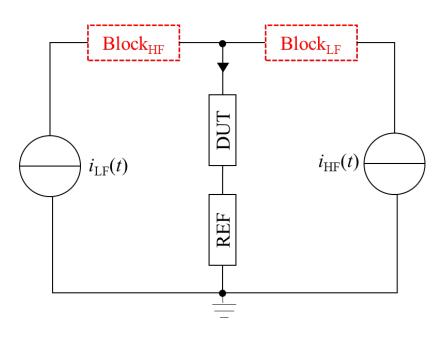
Generators capable of producing both high-current fundamental components (DC or AC 50/60 Hz) and superimposed lowamplitude high-frequency components are **not available on the market**.


Scope of the work here presented: to propose a setup to generate high current distorted waveforms with spectral content up to 150 kHz.

Proposed Generation Architecture (1/2)

Two different current sources:

- $i_{LF}(t)$ is dedicated to generating Low Frequency (LF) DC or AC 50/60 Hz current with high amplitude.
- i_{HF}(t) generates low-amplitude currents with High Frequencies (HFs) up to several kilohertz.


22NRM06 ADMIT 2nd Stakeholder Workshop

Proposed Generation Architecture (2/2)

Two blocking elements are connected in series with the current generators when it is necessary to protect each generator from the current generated by the other one.

Block_{HF} Element:

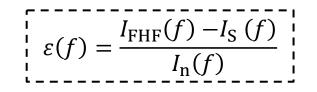
- Prevents HF currents into LF generator.
- Achieved by high impedance at HF using an inductance *L*.
- Impedance Z_L=jωL should be ≥ 10 × impedance of measurement branch.

Block_{LF} Element:

- Prevents LF currents into HF generator.
- Achieved by high impedance at 50/60 Hz using a capacitor *C*.
- Capacitance chosen so $Z_c=1/j\omega C$ is $\geq 10 \times$ impedance of measurement branch.

Experimental activity

Main goal \rightarrow to quantify how each source affects the current in the measurement branch generated by the other source when they are both active.

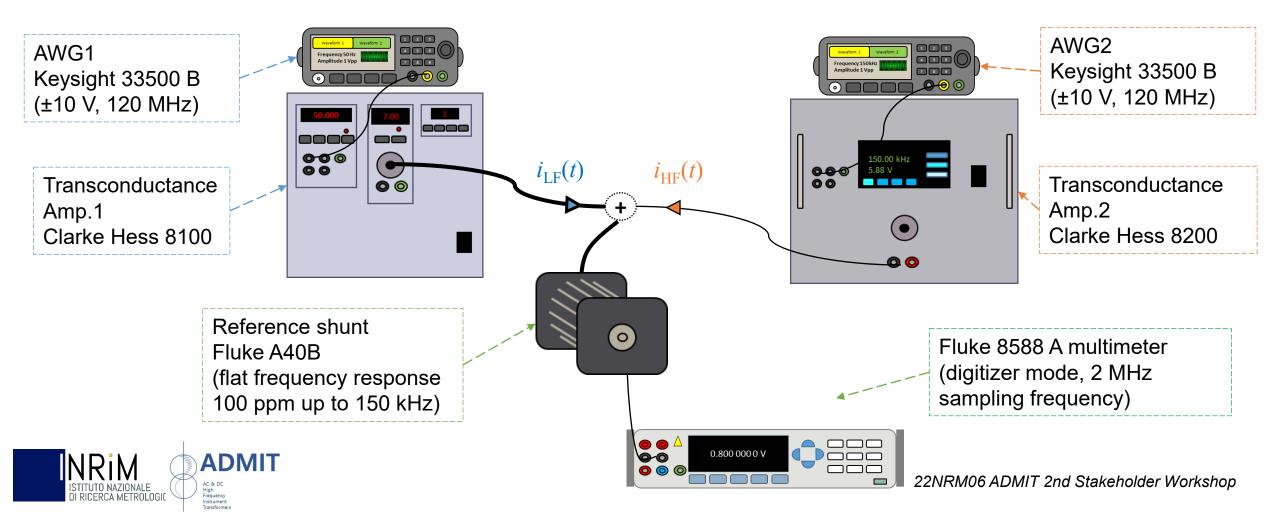

Test procedure involves three steps:

- 1. the solely generation of $i_{LF}(t)$
- 2. the solely generation of $i_{HF}(t)$ and
- 3. the simultaneous generation of the two currents $i_{LF}(t)$ and $i_{HF}(t)$.

 $i_{\rm LF}(t)$

- subscript "S": Single Tone current
 - subscript "FHF": Fundamental tone plus 1 component at HF

The **index** used to quantify the generation system performance:


ADMIT

- I_{FHF}(f) and I_S(f) are the RMS values of the current at frequency f measured under FHF and S test;
- $I_n(f)$ is the desired RMS value of the current at frequency f.

Generation and Measurement Setup

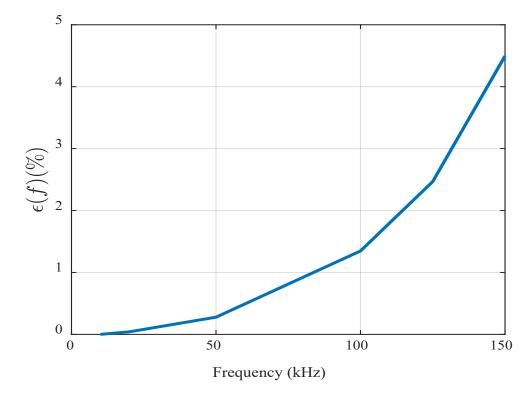
Starting from the general scheme, two investigated cases:


Case A: Connection of two transconductance amplifiers

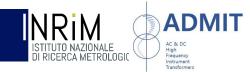
Generation and Measurement Setup

Case B: Connection of a step-up CT and a transconductance amplifier •

High Frequency Instrument Transformers


Experimental Results

Connection of two transconductance amplifiers


Test parameters:

 $i_{HF}(t) \rightarrow 4$ A from 10 kHz to 150 kHz $i_{LF}(t) \rightarrow 40$ A at 50 Hz

@ 50 Hz the maximum ϵ (50 Hz) is 50 µA/A @ 50 kHz the error ϵ (*f*) is 0.3 % @ 80 kHz ϵ (*f*) =1 % @ 150 kHz the error increases to 4.50 %

$$\varepsilon(f) = \frac{I_{\text{FHF}}(f) - I_{\text{S}}(f)}{I_{\text{n}}(f)} \rightarrow \varepsilon(f) > 0 \rightarrow I_{\text{FHF}}(f) > I_{\text{S}}(f)$$

22NRM06 ADMIT 2nd Stakeholder Workshop

Experimental Results

Connection of two transconductance amplifiers

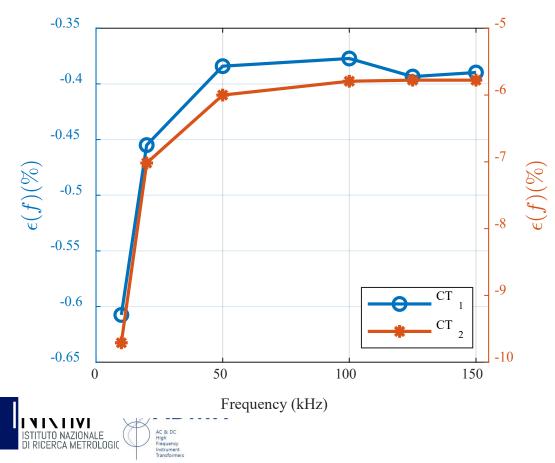
$I_{\mathrm{FHF}}(f) > I_{\mathrm{S}}(f)$

<u>Same test</u> is performed by selecting two different gains of the transconductance amplifier used to generate the $i_{LF}(t)$ current at <u>40 A and 50 Hz</u>: <u>10 S and 100 S</u>.

	N OF THE TRANSCON 0 Hz Current on th		
	ε (%)		
Frequency (kHz)	10 S	100 S	
20	0.042	0.022	
50	0.278	0.493	
100	1.347	3.053	
125	2.468	7.130	
150	4.496	21.141	

The difference increases as the frequency increases. @ 150 kHz there is a x5 factor

 \rightarrow There is a coupling between the two generators that leads the LF generator to capture, amplify and generate HF components too.



22NRM06 ADMIT 2nd Stakeholder Workshop

 $i_{\rm LF}(t) + i'_{\rm HF}(t)$

Experimental Results *Connection of step-up CT and transconductance amplifier*

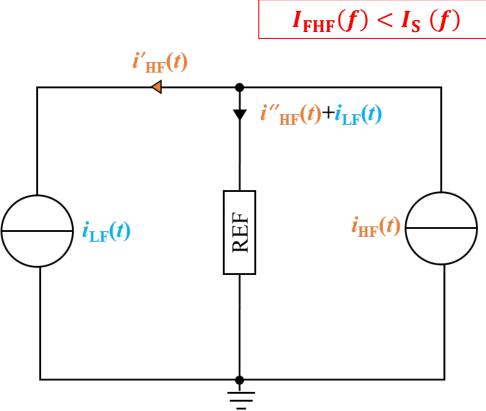
•CT₁: for MV application, 5/75 A/A •CT₂: window type, 5/250 A/A

LF: @ 50 Hz error lower than 50 µA/A (both)

HF: same behaviour but $\varepsilon(f)$ differ significantly by an order of magnitude.

-For $CT_1 \varepsilon(f)$ is always lower than -1 %

-For $CT_2 \varepsilon(f)$ goes from -9.7 % at 10 kHz to -5.7 % at 150 kHz.


$$\begin{aligned} \varepsilon(f) < 0 \\ I_{\rm FHF}(f) < I_{\rm S} \ (f) \end{aligned}$$

Experimental Results *Connection of step-up CT and transconductance amplifier*

•CT₂: series inductance L_s of 0.5 μ H. As the frequency increases, the output impedance of the step-up transformer (~Z=j ω L_s) also increases.

$$\succ$$
 L_s of CT₁ \approx 38 times L_s of CT₂

•CT₁: series inductance L_s of 19 μ H.

Conclusions

- 1. The activity proposed a flexible generation system for testing CTs in the presence of signals consisting of a high-current in DC/AC (50 Hz) with superimposed disturbances at reduced amplitude up to 150 kHz.
- 2. Two different configurations were tested: one based on the use of two transconductance amplifiers and one based on the use of step up transformers and transconductance amplifiers. The two configurations highlighted different associated issues.
- 3. The generation setup composed by two transconductance amplifiers poses no significant issues for the generation of the $i_{LF}(t)$ at 50 Hz with superimposed HF tones up to 80 kHz ($\epsilon(f) < 1$ %). When frequencies increase the coupling between the generators leads to a rise in the error $\epsilon(f)$ up to 4.5 % at 150 kHz.
- 4. The case based on the use of step-up CTs has highlighted that the parameters of the adopted step up CT are crucial and, in some cases, it can be necessary to insert into the circuit blocking elements.

Thanks for your attention! Questions?

ACKNOWLEDGMENT

The results presented were developed in the framework of the project 22NRM06 ADMIT that has received funding from the European Partnership on Metrology, co-financed by the European Union's Horizon Europe Research and Innovation Programme and from by the Participating States

