

AC & DC High Frequency Instrument

ESSAIS

CERTIFICATION

EXPERTISE ET INNOVATION

"The project 22NRM06 ADMIT has received funding from the European Partnership on Metrology, cofinanced by the European Union's Horizon Europe Research and Innovation Programme and from by the Participating States."

WP2 : VOLTAGE

CHARACTERIZATION OF AC AND DC MV INSTRUMENT

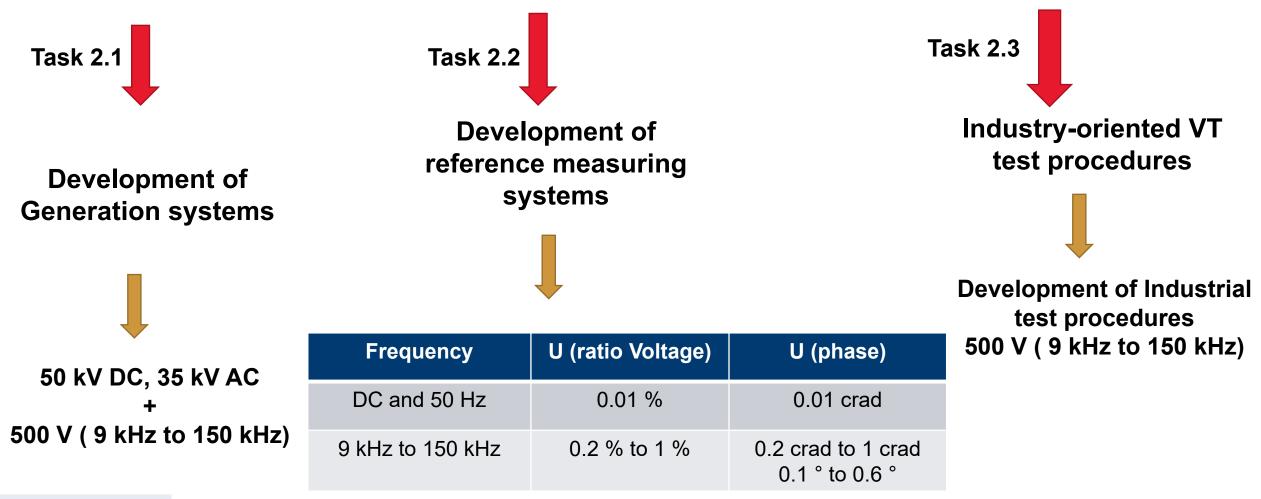
TRANSFORMERS IN EXTENDED FREQUENCY RANGE UP

TO 150 KHz

(ADMIT)

Mohamed.agazar@lne.fr

Transformers


2024/01/15 , M9 MEETING

FORMATION

OVERVIEW OF THE WP2

Infrastructure for voltage generation and traceable measurement chains

OVERVIEW OF THE WP2

WB0—covering harmonics ≤ 13th harmonic. WB1—harmonic frequencies \leq 3 kHz. WB2—Harmonic frequencies \leq 20 kHz. WB3—Harmonic frequencies ≤ 150 kHz.

Class 0.1 :

	1 % up to 20 kHz
	2 % up to 50 kHz
	5 % up to 150 kHz
Class 0.2	
	2 % up to 20 kHz
	4 % up to 50 kHz
	5 % up to 150 kHz
Class 0.5	
	5 % up to 20 kHz
	10 % up to 150 kHz
Class 1	-
	10 % up to 20 kHz
	20 % up to 150 kHz
Protection	
	10 % up to 20 kHz
	30 % up to 150 kHz

The needed uncertainty : 5 to ten times lower than accuracies

Accuracy class		at fre	Ratio error equencies shown	below	Phase error at frequencies shown below Degrees			
			%					
	WB1	$f_{\rm r} \leq f \leq 1 \text{ kHz}$	1 < <i>f</i> ≤ 1,5 kHz	1,5 < <i>f</i> ≤ 3 kHz	$f_{f} \le f \le 1 \text{ kHz}$	1 < <i>f</i> ≤ 1,5 kHz	1,5 < <i>f</i> ≤ 3 kHz	
	WB2	$f_{\rm r} < f \le 5 \text{ kHz}$	5 < <i>f</i> ≤ 10 kHz	10 < <i>f</i> ≤ 20 kHz	$f_{\rm r} < f \le 5 \text{ kHz}$	5 < <i>f</i> ≤ 10 kHz	10 < <i>f</i> ≤ 20 kHz	
	WB3	$f_{\rm f} < f \le 20 \text{ kHz}$	20 < <i>f</i> ≤ 50 kHz	50 < ƒ ≤ 150 kHz	$f_r < f \le 20 \text{ kHz}$	20 < IJ 50 kHz	50 < <i>f</i> ≤ 150 kHz	
	WB4	$f_{\rm r} \leq f \leq 50 \text{ kHz}$	50 < <i>f</i> ≤ 150 kHz	150 < <i>f</i> ≤ 500 kHz	$f_{\rm f} < f \le 50 \text{ kHz}$	50 < <i>f</i> ≤ 150 kHz	150 < <i>f</i> ≤ 500 kHz	
0,1	1	±1	±2	±5	±1	±2	±5	
0,2 - 0	0,2 S	±2	±4	±5	±2	±4	±5	
0,5 - 0	0,5 S	±5	±10	±10	±5	±10	±20	
1		±10	±20	±20	±10	±20	±20	
Protec	ction	±10	±20	±30	-	-	-	

The accuracy classes 0,2 S and 0,5 S apply only for current transformers.

NOTE 1 Accuracy class extension WB4 is intended for very wide bandwidth applications like travelling-wave protections and fault locators where signal frequencies reach as high as 500 kHz. The use of relays based on travelling-wave analysis is a promising solution offering very accurate fault location. For instance, new devices based on such principles claim to be much more accurate than conventional reactance-based fault locators. This field is still evolving, but CTs and VTs suitable for these relays need a very large frequency range, hence the "extended" range up to 500 kHz. No consensus for general requirements for this kind of application is available at the date of the publication.

NOTE 2 Travelling wave relays are designed especially for this purpose and are very special (very large bandwidth, etc.). Although WB4 compliant ITs are very desirable, inductive CTs and CVTs often have not a sufficient bandwidth allowing relays and fault locators to accurately measure the traveling wave arrival times.

NOTE 3 Owing to the high bandwidth, the classes WB3 and WB4 are not compatible with digital signals in accordance with IEC 61869-9 and its standardized sampling rates.

IEC 61869-1:2024, 5.7.4 Accuracy requirements for harmonics".

Z

OVERVIEW OF THE WP2

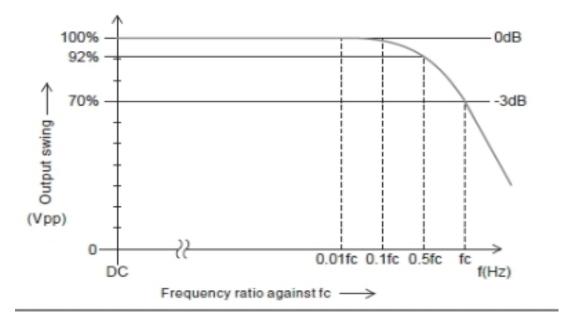
		•
INRIM	Istituto Nazionale di Ricerca Metrologica	Italy
FFII	Fundación para el Fomento de la Innovación Industrial	Spain
LNE	Laboratoire national de métrologie et d'essais	France
RISE	RISE Research Institutes of Sweden AB	Sweden
VSL	VSL B.V.	Netherlands
VTT	Teknologian tutkimuskeskus VTT Oy	Finland
RSE	Ricerca sul Sistema Energetico – RSE S.p.A.	Italy
SUN	Università degli studi della Campania Luigi Vanvitelli	Italy
UNIBO	Alma mater studiorum Università di Bologna	Italy
UNIGE	Università degli Studi di Genova	Italy
ARTECHE	Electrotécnica Arteche Hermanos, Sociedad Limitada	Spain
UNARETI	Unareti SpA	Italy
METAS	Eidgenössisches Institut für Metrologie METAS	Switzerland

35.7 Months

4 **LNE**

- First part : Voltage generation systems
- Second part : Voltage measuring systems

First part : Voltage generation systems

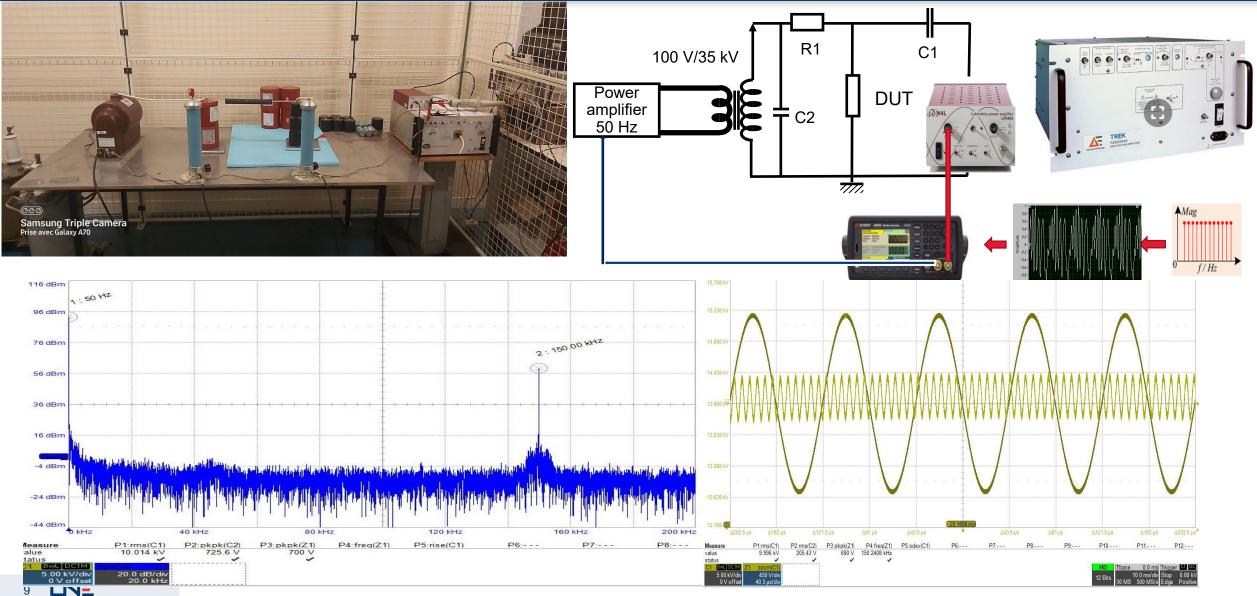

DEVELOPMENT OF HV-HF GENERATORS

Fundamental up to 50 kVp (DC or AC) Up to 20 mA max About 600 W BW of a few kHz Impossible to reach 500 V at 150 kHz

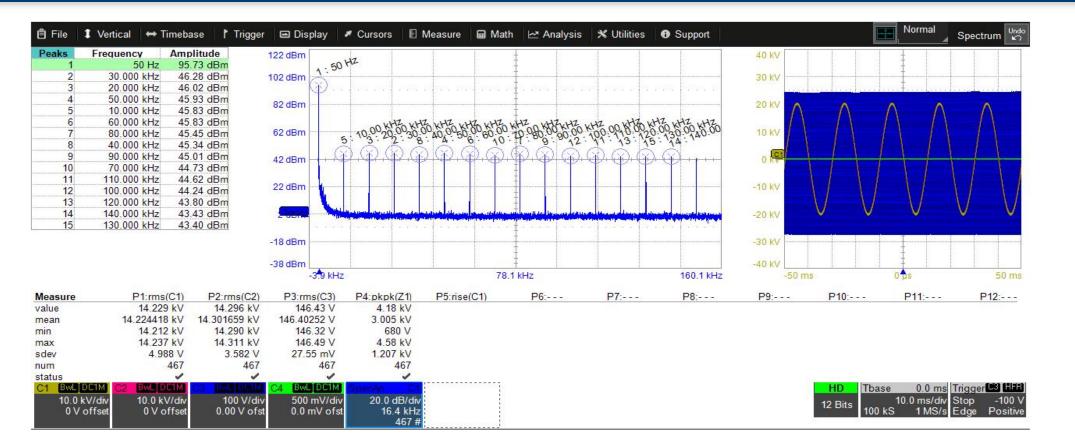
Model		Output Voltage [kVdc]	Output Current	Rated output power [W]	Slew Rate [V/µs]	Frequency Response (Typical value at sine wave operation with resistive load)		Safety Standards
						Full scale (-1 dB) *	Small bandwidth (10% of full scale)(-3 dB)	
> AMPS-0.6B2000		-0.6 to +0.6 kV	±2000 mAmax or ±4000 mApk 1ms	1200 W	500 V/µs	DC to 100 kHz	DC to 200 kHz	CE
> AMPS-2B200		-2 to 2 kV	±200 mAmax or ±400 mApk 1 ms	400 W	1000 V/µs	DC to 80 kHz	DC to 160 kHz	CE
> AMPS-5B80		-5 to +5kV	±80 mAmax or ±160 mApk 1 ms	400 W	1000 V/µs	DC to 50 kHz	DC to 100 kHz	CE
> AMPS-10B40		-10 to +10 kV	±40 mAmax or ±120 mApk 1 ms	400 W	1200 V/µs	DC to 20 kHz	DC to 40 kHz	CE
> AMPS-20B20		-20 to +20 kV	±20 mAmax or ±60 mApk 1 ms	400 W	1200 V/µs	DC to 10 kHz	DC to 20 kHz	CE
> AMPS-30B20		-30 to +30 kV	±20 mAmax or ±40 mApk 1ms	600 W	800 V/µs	DC to 5 kHz	DC to 20 kHz	-

DEVELOPMENT OF HV-HF GENERATORS

TRACTION POWER LOAD IMPEDANCE IDENTIFICATIO



Tested object Ls 1770 V **Traction Power Load Impedance Identification** Power ത്ത TPL supply $\boldsymbol{u}_{\mathrm{n}}$ Plug-and-play connection port Harmonic generator H-bridge 1 ന്ന Sensors Power TPL supply ls. $u_{\rm r}, i_{\rm r}$ TPL under test Multi-frequency harmonic H-bridge 2 **▲**Mag **▲**Mag $l_{\rm F}$ Cde2 📥 Ude2 2 Uſ Data FFT 2 **▲** Ang $u_{\rm r}$ $u_{\rm F}$ u_r storage Uc Output f/Hzf/Hzf/Hz1) Harmonic 2) Response 3) Spectrum 4) Impedance excitation collection extraction calculation H-bridge n Cden 📥 Uden


Work well for frequency up to 5 kHz

DEVELOPMENT OF HV-HF GENERATORS TWO GROUNDED GENERATORS (LNE)

DEVELOPMENT OF HV-HF GENERATORS TWO GROUNDED GENERATORS (LNE)

Up to 15 kV rms + 500 V (10-150 kHz)

- Better than 0.01 % for 50 Hz
- Better than 0.1 % up to 150 kHz

Next step

Upgrade up to 35 kV (50 Hz):

- Using a 6 kVA amplifier
- 5 kVA transformer (purchased)


AC & DC High Frequency Instrument Transformers

- Full remote control operation

10 LNE

DEVELOPMENT OF HV-HF GENERATORS TWO SERIES GENERATORS (LCOE)

Test specifications.

- 1. High Voltage Divider + Sample.
 - a. Estimated capacity \approx 3.5nF.
- 2. AWG + power amplifier.
 - a. Power requirement for testing at 150kHz, 500V: $S_{max} \approx 1$ kVA.
 - b. Frequency range 9 150kHz.
 - c. Output voltage > 50V.
- 3. High Frequency Voltage Transformer.
 - a. Same power and frequency requisites as the power amplifier.
 - b. Turn ratio of at least 10.
 - c. Insulation between secondary and primary windings of $10kV_{dc}$.
- 4. HVDC source.
 - a. Sufficient filter for a low harmonic content.
 - b. 50kV_{DC}

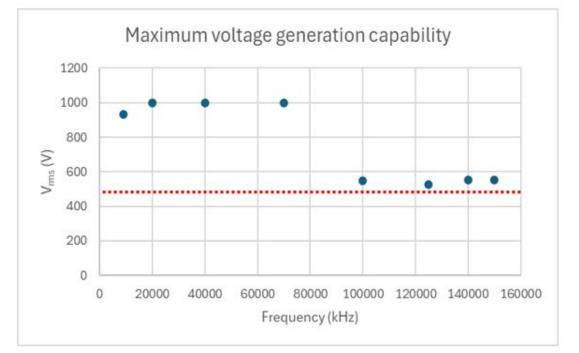
DEVELOPMENT OF HV-HF GENERATORS TWO SERIES GENERATORS (LCOE)

Results from the tests.

- Capability of sumperimposing DC+harmonics from 9kHz 150kHz.
- Capability of generating 500V_{ac} from ~75Hz 150kHz with high capacitances. Voltage generation with lower capacitances would be higher.

AWG + Amplifier.

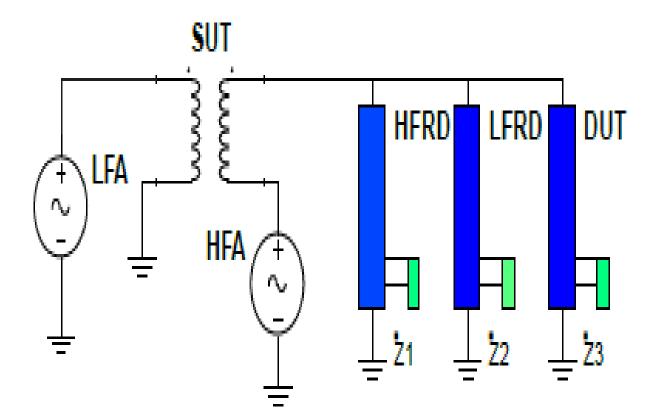
Transformer.


Voltage divider.

High Frequency Voltage

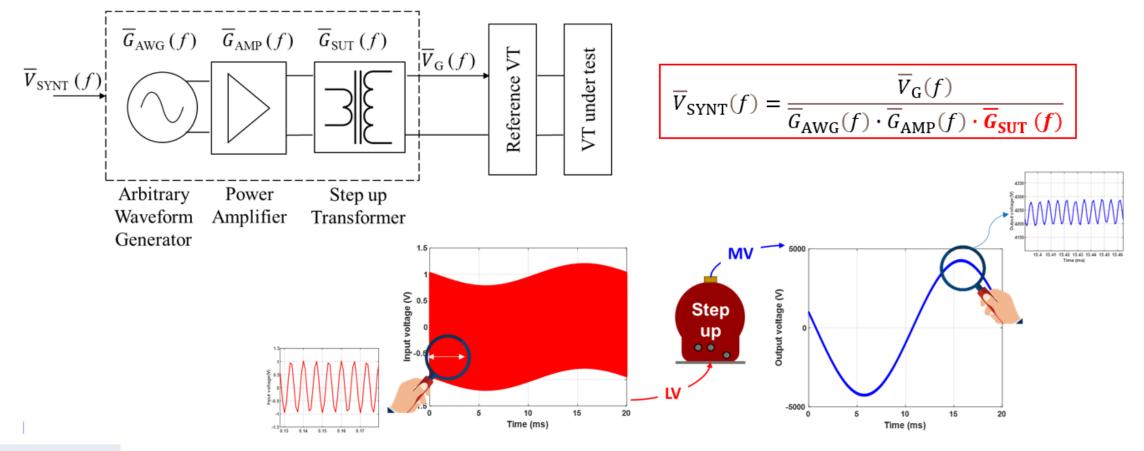
Capacitor, simulating

customer's divider.


Capability of generating 1000V_{ac} from ~9kHz – 75kHz.

4

DEVELOPMENT OF HV-HF GENERATORS TWO SERIES GENERATORS (SUN)

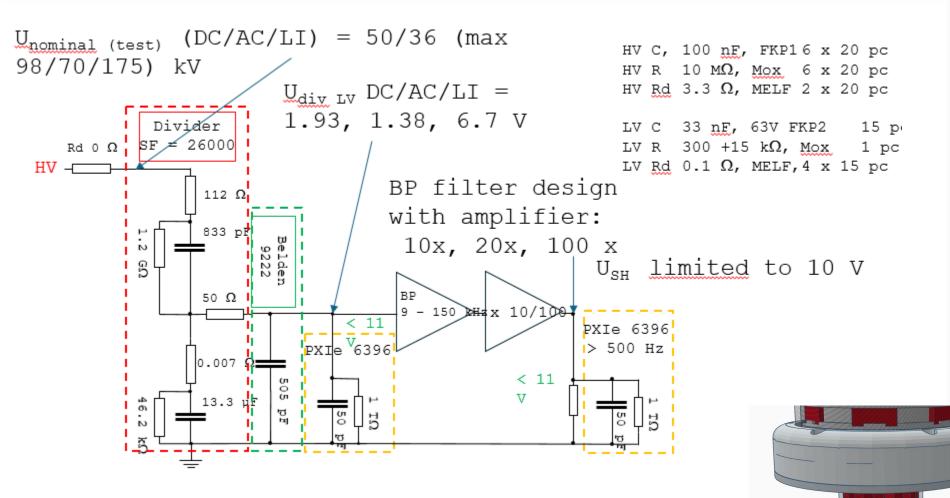


A reference setup for VT testing based on two series-connected voltage generators

A setup for MV VT testing up to 150 kHz was developed. A Low Frequency Amplifier (LFA) drives a Step-Up Transformer (SUT) that generates the fundamental tone at MV level. The SUT is series connected to a High Frequency Amplifier (HFA) that generates the high frequency components (tens-hundreds of volt). Two reference devices are used, one for fundamental tone (LFRD) and one for the high frequency tones (HFRD).

ADMIT AC & DC High Frequency Instrument Transformers

TARGET: Producing **distorted voltages at MV** using the <u>simple</u> circuit in figure compensating for the frequency behaviour of the generation setup components.


Second part : Voltage measuring systems

MEASURING SYSTEMS CHARACTERIZATION OF AVAILABLE DIVIDERS

MEASURING SYSTEMS

DIVIDERS UNDER DEVELOPMENT (LNE

First prototype (RCr)

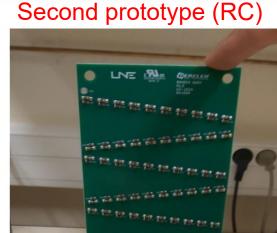
R = 110 MΩ C= 1.8 nF r=56 Ω

Wima capacitor FKP4, 200 ppm/ °C Metal film resistor Vishay CMF60, 25 ppm/°C,0.3 ppm/V.

Frequency, temperature and voltage compensation

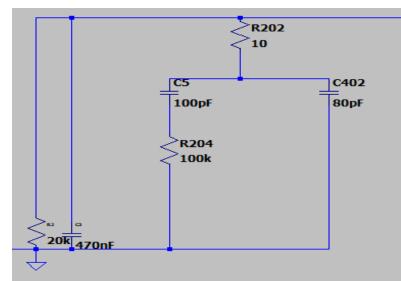
DC :

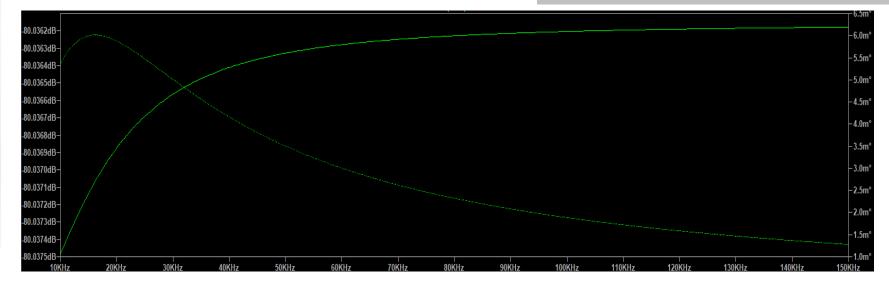
V.C = -1 ppm/kV SEL heating = -1 ppm/min


0.1 % frequency stability up to 150 kHz

MEASURING SYSTEMS

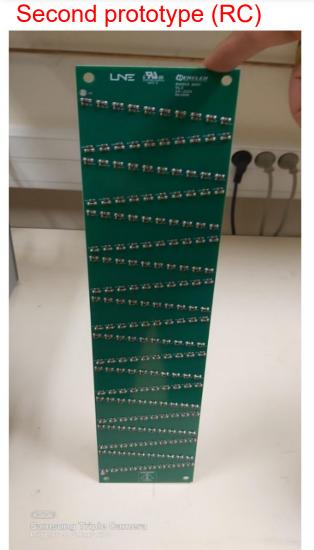
DIVIDERS UNDER DEVELOPMENT (LNE


Samsung Thiple Camer


R = 200 MΩ = 200×1 MΩ C= 50 pF → 200× 10 nF

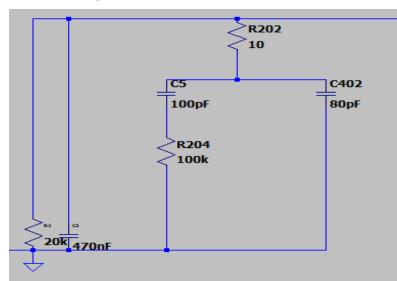
NPO capacitor, 0-30 ppm/°C, 10 nF/650 V. MELF resistor (15 ppm/°C, 0.26 ppm/V)

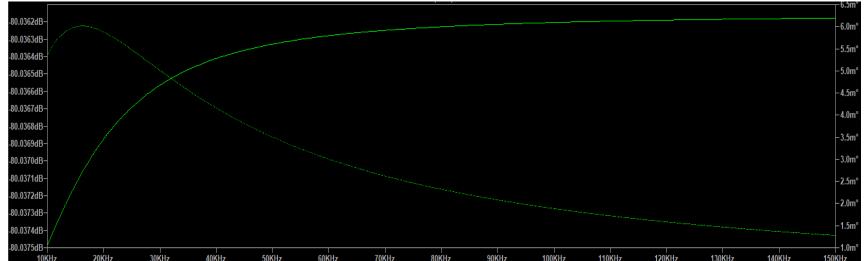
DC : V.C = < 1 ppm/kV SEL heating = -2.5 ppm/min



MEASURING SYSTEMS

DIVIDERS UNDER DEVELOPMENT (LNE

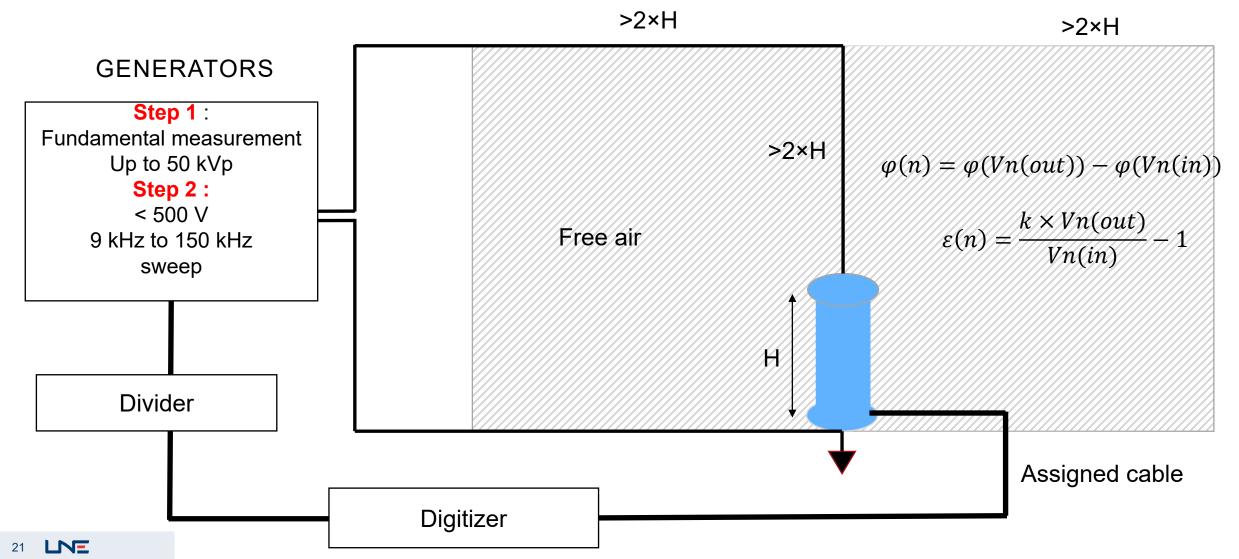



R = 200 MΩ = 200×1 MΩ C= 50 pF → 200× 10 nF

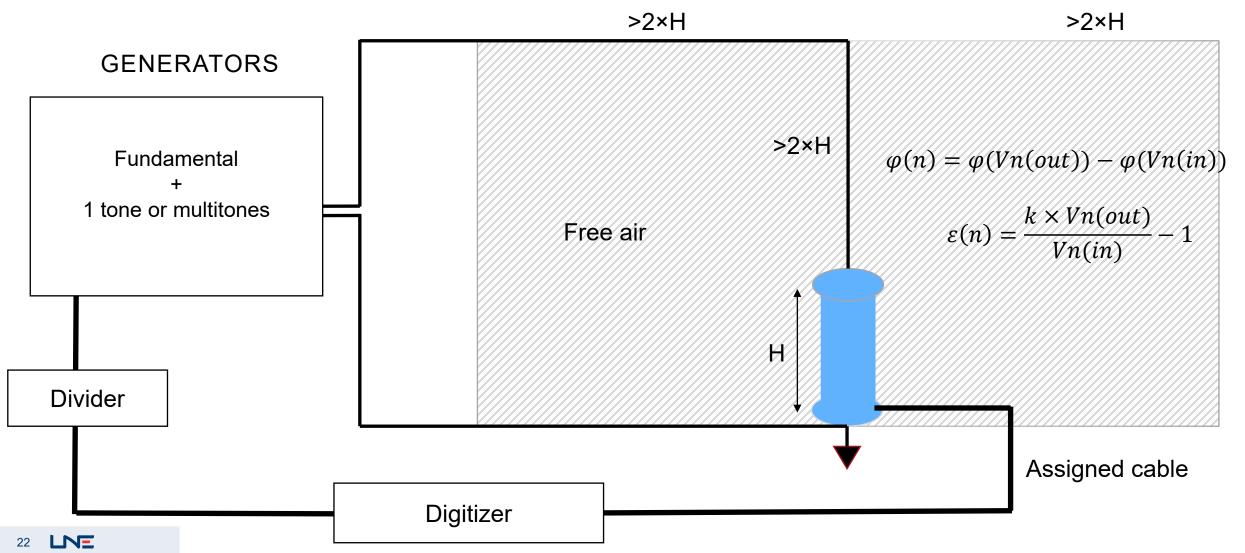
NPO capacitor, 0-30 ppm/°C, 10 nF/650 V. MELF resistor (15 ppm/°C, 0.26 ppm/V)

DC : V.C = < 1 ppm/kV SEL heating = -2.5 ppm/min

Frequency compensation box :



PROCEDURES


SIMPLIFIED PROCEDURE :

PROCEDURES

REFERENCE PROCEDURE :

THANK YOU FOR YOUR ATTENTIONM